Презентация на тему "Исследование тригонометрических функций" по математике

Презентация по слайдам
Слайд №1

Текст слайда: Исследование тригонометрических функций.


Слайд №2

Текст слайда: Содержание Область определения функции Область значения функции Периодичность Промежутки знакопостоянства Четность и нечетность функций Возрастание и убывание функций План исследования функции Экстремумы


Слайд №3

Текст слайда: Областью определения функции f(x) называют множество всех значений, которые может принимать независимая переменная x. f(x)=2sin x+1 D(f): (- ;+ ) f(x)=tg x D(f): x


Слайд №4

Текст слайда: Задание Найдите область определения функции: ƒ(x)=1+ ctg x ƒ(x)=1+ sin² x ƒ(x)=2cos(x-¶/3)


Слайд №5

Текст слайда: Множество, состоящее из всех чисел f(x), таких, что х принадлежит области определения функции f, называют областью значений функции F. f(x)=1,5cosx+ E(f)=[-1,5;1,5] f(x)=tg x E(f)=(- ;+ )


Слайд №6

Текст слайда: Задание Найдите область значений функции: ƒ(x)=3 + 0,5 sin (x + ¶/4) ƒ(x)=1,5 – 0,5 cos² x ƒ(x)=1 + 2 sin x


Слайд №7

Текст слайда: Функцию f называют периодической с периодом Т 0, если для любого х из области определения f(х+Т)=f(x)=f(x+T). Каким образом по графику определить период? Если Т-период функции, то при любом целом значении k число kT так же является ее периодом.


Слайд №8

Текст слайда: Задание Найдите наименьший положительный период каждой из функций: y=1/2 sin x/4 y=4 cos 2x y=3 tg 1,5x


Слайд №9

Текст слайда: При каких значениях х функция принимает положительные (отрицательные) значения? f(x)0, если х, принадлежит промежутку (-П/2+2Пk;П/2+2Пk)


Слайд №10

Текст слайда: Задание Найдите промежутки знакопостоянcтва: y=-sin 3x y=cos x/2 y=tg 2x/3


Слайд №11

Текст слайда: График четной функции симметричен относительно оси ординат. (f(-x)=f(x)) На рисунке изображен график четной функции. Достройте график на промежутке (-П/2;0). График какой функции получился? f(x)=2sin|x|


Слайд №12

Текст слайда: График нечетной функции симметричен относительно начала координат. (f(-x)=-f(x)) На рисунке Изображен график нечетной функции. Достройте график на промежутке (-П/2;0).


Слайд №13

Текст слайда: Функция f возрастает на множестве Р, если для любых х1 и х2 из множества Р, таких, что х1>х2, выполнено неравенство f(x1)>f(x2). Определите промежутки возрастания функции. [Пk;3П/2k] f(x)=-cosx


Слайд №14

Текст слайда: Функция f убывает на множестве Р, если для любых х1 и х2 из множества Р, таких, что х1>х2, выполнено неравенство f(x1)


Слайд №15

Текст слайда: Задание Найдите промежутки возрастания и убывания функции: y=4 cos 3x y= 2 tg x/2 y= 0,2 sin 4x


Слайд №16

Текст слайда: Экстремумы функции max f(x): f(П/4+Пk)=1 min f(x) определи самостоятельно


Слайд №17

Текст слайда: Задание Найдите экстремумы функции: y=cos (x + ¶/4) y=sin (x + ¶/6) y=1 - sin (x - ¶/3)


Слайд №18

Текст слайда: “Чтение” графика Область определения функции Область значений функции Четность (нечетность) функции Периодичность (наименьший положительный период) функции Точки пересечения графика с осями Промежутки знакопостоянства Промежутки возрастания (убывания) функции Максимумы (минимумы)


Слайд №19

Текст слайда: Если что-то не усвоил, вернись на нужную страницу. Область определения функции Область значения функции Периодичность Промежутки знакопостоянства Четность и нечетность функций Возрастание и убывание функций Максимумы (минимумы) План исследования функции


Добавить комментарий