Презентация на тему "Конус" по геометрии

Презентация по слайдам
Слайд №1

Текст слайда: Проект подготовила ученица 11 класса Ламонова Светлана Руководитель: учитель математики Стрельникова Л.П. 2009 год. Новотроицкая СОШ.


Слайд №2

Текст слайда: Ко нус — тело, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность. Иногда конусом называют часть такого тела, полученную объединением всех отрезков, соединяющих вершину и точки плоской поверхности (последнюю в таком случае называют основанием конуса, а конус называют опирающимся на данное основание). Далее будет рассматриваться именно этот случай, если не оговорено обратное. Если основание конуса представляет собой многоугольник, конус становится пирамидой. Отрезок, соединяющий вершину и границу основания, называется образующей конуса. Объединение образующих конуса называется образующей (или боковой) поверхностью конуса. Образующая поверхность конуса является конической поверхностью.


Слайд №3

Текст слайда: Конусом (точнее, круговым конусом) называется тело, которое состоит из круга — основания конуса, точки, не лежащей в плоскости этого круга,— вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания .Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими, конуса. Поверхность конуса состоит из основания и боковой поверхности


Слайд №4

Текст слайда: Если основание конуса имеет центр симметрии (например, является кругом или эллипсом) и ортогональная проекция вершины конуса на плоскость основания совпадает с этим центром, то конус называется прямым. При этом прямая, соединяющая вершину и центр основания, называется осью конуса. Косой (наклонный) конус — конус, у которого ортогональная проекция вершины на основание не совпадает с его центром симметрии. Круговой конус — конус, основание которого является кругом. Прямой круговой конус (часто его называют просто конусом) можно получить вращением прямоугольного треугольника вокруг прямой, содержащей катет (эта прямая представляет собой ось конуса). Конус, опирающийся на эллипс, параболу или гиперболу, называют соответственно эллиптическим, параболическим и гиперболическим конусом (последние два имеют бесконечный объём). Часть конуса, лежащая между основанием и плоскостью, параллельной основанию и находящейся между вершиной и основанием, называется усечённым конусом. Если площадь основания конечна, то объём конуса также конечен и равен трети произведения высоты на площадь основания. Таким образом, все конусы, опирающиеся на данное основание и имеющие вершину, находящуюся на данной плоскости, параллельной основанию, имеют равный объём, поскольку их высоты равны.


Слайд №5

Слайд №6

Текст слайда: Центр тяжести любого конуса с конечным объёмом лежит на четверти высоты от основания. Телесный угол при вершине прямого кругового конуса равен — угол раствора конуса (то есть удвоенный угол между осью конуса и любой прямой на его боковой поверхности).


Слайд №7

Текст слайда: Площадь боковой и полной поверхности конуса с радиусом R и образующей L выражаются формулами: Sбок= πRL; Sполн=πR(R+L) Объем кругового конуса равен Пересечение плоскости с прямым круговым конусом является одним из конических сечений (в невырожденных случаях — эллипсом, параболой или гиперболой, в зависимости от положения секущей плоскости). В алгебраической геометрии конус — это произвольное подмножество K векторного пространства V над полем F, для которого для любого λK = K


Слайд №8

Текст слайда: Сечение конуса плоскостью, проходящей через его вершину, представляет собой равнобедренный треугольник, у которого боковые стороны являются образующими конуса .В частности, равнобедренным треугольником является осевое сечение конуса. Это сечение, которое проходит через ось конуса


Слайд №9

Текст слайда: Плоскость, параллельная плоскости основания конуса, пересекает конус по кругу, а боковую поверхность - по окружности с центром на оси конуса. Касательной плоскостью к конусу называется плоскость, проходящая через образующую конуса и перпендикулярная плоскости осевого сечения, содержащей эту образующую


Слайд №10

Слайд №11

Слайд №12

Слайд №13