Презентация на тему "Длина окружности (9 класс)" по геометрии

Презентация по слайдам
Слайд №1

Текст слайда: Геометрия. 9 класс.


Слайд №2

Текст слайда: Мастер подключения презентации к уроку. S T O P Дальнейший просмотр возможен только при наличии соответствующих знаний. А они у тебя есть? Да. Могу доказать. Да, но я устал и думать не хочу. Ничего не знаю и знать не хочу.


Слайд №3

Текст слайда: Понятие длины окружности. Представим себе нить в форме окружности. Разрежем её и растянем за концы. Тонкая нить С Длина полученного отрезка и есть длина окружности.


Слайд №4

Текст слайда: Периметр любого вписанного в окружность многоугольника является приближённым значением длины окружности. При увеличении числа сторон правильный многоугольник всё ближе и ближе «прилегает» к окружности. Длина окружности – это предел, к которому стремится периметр правильного вписанного многоугольника при неограниченном увеличении числа его сторон.


Слайд №5

Текст слайда: Свойство длины окружности. Отношение длины окружности к её диаметру есть одно и то же число для всех окружностей. ( стр. 265, курсив предпоследний абзац) O1 Дано: Окр(О1;R1),Oкр(O2;R2), C1 – длина Oкр(O1; R1), C2 – длина Oкр(O2; R2). Доказать: O2


Слайд №6

Текст слайда: Доказательство: 1) Впишем в каждую окружность правильный n-угольник. По свойству пропорции Если число сторон неограниченно увеличивать, то n , Пусть Р1, Р2 – их периметры; а аn1, an2 – их стороны. Тогда P1= n.an1= Ч.т.д. P1 C1, P2 C2 тогда


Слайд №7

Текст слайда: Число «пи». Вывод формулы длины окружности. Из свойства длины окружности следует . что есть число постоянное и теоретически доказано, что это число иррациональное. Обозначают его греческой буквой «пи». Это я знаю и помню прекрасно. C=2 R - формула длины окружности.


Слайд №8

Текст слайда: Задача 1. Вообразите, что вы обошли землю по экватору. На сколько при этом верхушка вашей головы прошла более длинный путь, чем кончик вашей ноги? Решение. Верхушка головы - где 1,7м рост человека. Ноги прошли путь , где R радиус земного шара. Разность путей равна Итак голова прошла путь на 10,7 м больше, чем ноги. Ответ:10,7 м.


Слайд №9

Текст слайда: Задача 2. Если обтянуть земной шар по экватору проволокой и затем прибавить к её длине 1м, то сможет ли между проволокой и землёй проскочить мышь. Решение. Пусть длина промежутка х см. Обычно отвечают, что промежуток будет тоньше волоса. Если R радиус земли, то длина проволоки была 2 Rсм, а станет 2 (R + x)см. А по условию задачи их разность равна 100 см. Уравнение. Ответ:16 см.


Слайд №10

Текст слайда: № 1104(а). Найти длину окружности описанной около правильного треугольника со стороной а. Выразите R через а. Подставьте в формулу длины окружности.


Слайд №11

Текст слайда: № 1104 (в). Найти длину окружности описанной около равнобедренного треугольника с основанием а и Дано: АВС – равнобедренный, вписан в О(О; R); АВ=AС=b, BC=a. R O R H А В С ВН= Из АВН: АН2= Так как АО=R, то ОН= стороной b. Найти: С. Решение. 1)


Слайд №12

Текст слайда: № 1104 (в). Найти длину окружности описанной около равнобедренного треугольника с основанием Из ВОН: BО2=OH2+BH2=R2= А В С Н C= О а и боковой стороной b. Ответ:


Слайд №13

Текст слайда: № 3. Дана равнобедренная трапеция со сторонами 2a, a, a, a. Найти длину окружности, описанной Дано: АВСD – трапеция, АВ=ВС=СD= а, АD=2а. около трапеции. Найти: Длину окружности. Решение. Окр(О; R) описанная около окружности. Достроим трапецию ABCD до правильного шестиугольника. Тогда окружность описанная около шестиугольника будет описана и около трапеции.


Слайд №14

Текст слайда: № 3. Дана равнобедренная трапеция со сторонами 2a, a, a, a. Найти длину окружности, описанной Так как шестиугольник правильный, то радиус описанной окружности равен стороне. А значит C=2 R=2 a. около трапеции. Ответ: 2 a. A B C D


Слайд №15

Текст слайда: ВОПРОСЫ ДЛЯ ПОВТОРЕНИЯ Сформулируйте основное свойство длины окружности. На чём основывается его доказательство? Как вычисляется длина окружности по формуле? Какое число обозначается буквой и чему равно его приближённое значение? Как изменится длина окружности, если радиус окружности уменьшить (увеличить) в k раз? Как изменится длина окружности, если радиус окружности уменьшить (увеличить) в k раз?


Слайд №16

Текст слайда: Домашнее задание     Вопросы 8-9(стр. 270).     №1108, №1105(а).


Слайд №17

Текст слайда: Спасибо за урок, дети.


Добавить комментарий

You must have JavaScript enabled to use this form.