Системы уравнений с двумя переменными (9 класс)



Аттестуемый педагог (ФИО) Толмачева Галина Николаевна

Предмет: алгебра

Класс: 9 Б

Тема урока: Системы уравнений с двумя переменными.

Цель урока:

Расширить представление обучающихся о системах уравнений с двумя переменными и способах их решения; рассмотреть графический метод решения систем уравнений.

Задачи:

  1. - Обучающие – сформировать умение графически решать системы уравнений с двумя переменными ; повторить графики функций, дать наглядные представления о возможном количестве решений систем уравнений.

  2. - Развивающие – развивать у учащихся мыслительную деятельность; самостоятельность; аккуратность при построении графиков, логическое мышление (вывод, анализ, обобщение).

  3. - Воспитательные – формировать интерес к предмету; графическую культуру; уважение чужого мнения; дисциплинированность.

Тип урока: урок изучения нового материала.


Формы работы учащихся: индивидуальная, фронтальная, с использованием ИКТ

Оборудованиепроектор, экран, презентация, таблички с функциями, плакат с графиками систем уравнений, макет окружности.

Ход урока

Этапы работы

Цель

Деятельность учителя

Деятельность учащихся

1. Орг. момент


Организовать работу обучающихся

на уроке, настроить обучающихся на учебную деятельность, предмет и тему урока.


В начале урока построение, приветствие ребят и учителя. Сообщение темы урока.

- Здравствуйте ребята, сегодня на уроке мы будем изучать тему: Системы уравнений с двумя переменными

( слайд №1)




2.Повторение

Повторить

учебный

материал,

встречающийся

при изучении

новой темы.

- Ребята, посмотрите на слова, из которых состоит тема нашего урока.

- В название темы встретились ли вам знакомые слова?

- Какие?

- Что же такое уравнение?



- А какие виды уравнений вы знаете?





- А что значит решить уравнение?



- Сколько переменных в этих уравнениях?

- А в названии нашей темы, сколько должно быть переменных?

Назовите пример линейного уравнения с двумя переменными.

- Можно ли выразить из этого уравнения одну переменную через другую?

- А какую переменную вы хотите выразить?

Давайте, ее выразим

А другую переменную можно выразить?

Выразите ее

- Что вам напоминает выражение с переменной у?

- А как называется эта функция?

-Как можно ее увидеть?







- А теперь усложним это уравнение.

- Какое уравнение получится?

- Знакомо вам это уравнение?





- Что является графиком квадратичной функции?

- Из какой функции получена данная функция? С помощью какого преобразования?



Так как мы заговорили о функциях, вспомните, какие еще бывают функции, и поздороваемся с ними.

- Вы же здороваетесь со знакомыми людьми?

Вот и мы будем здороваться со знакомыми функциями и рассказывать о них все, что знаем.

(учитель показывает таблички с различными видами функций, а ученики определяют их название и график)

  1. у=кх Что вы знаете об этой функции?



















  1. у=к/х Что вы можете сказать об этой функции?















  1. += Что вы можете сказать об этом уравнении?





-Хорошо, молодцы, справились с заданием, а теперь давайте вспомним, как выглядят графики функций.

Слайд 2)

- Как называется каждая из функций?

- Задания с графиками очень часто встречаются на ГИА по математике. Рассмотрим одно из таких заданий. Соотнесите график функции с соответствующей формулой.( Слайд 3)

















- Мы повторили все, что связано со словами « уравнение с двумя переменными» , а теперь вернемся к теме урока

- Какое же слово мы не разобрали?

- Что же значит слово « система»?



- Давайте посмотрим, что означает слово система по толковому словарю.











-Но ведь с этим словом мы с вами уже знакомы, и в 7 и 8 классах мы решали системы уравнений.

- А, что значит решить систему уравнений?



- Какими способами можно решить систему уравнений?

- Сегодня мы будем рассматривать только графический способ.

-А теперь сформулируйте цель нашего урока.












Да



Уравнения

Это равенство, содержащее буквы

Линейные, квадратичные, дробные, целые

Найти неизвестную переменную

Одна



Две



х +у = 5







Можно

х



х =5 – у

Да

у = 5 - х



Функцию

Линейная

Построить график прямой, для его построения достаточно взять две точки.



у = 5-

Да, это уравнение квадратичной функции

Парабола, ветви направлены вниз

Из функции у= - , с помощью параллельного переноса вдоль оси у на 5 единиц вверх







Да















Это прямая пропорциональность, графиком является прямая, проходящая через начало координат. Если к>о, то график располагается в 1 и 3 координатной четверти, если к<0, то во 2 и 4 четверти.

Это обратная пропорциональность, графиком является гипербола. Если к>о, то график располагается в 1 и 3 координатной четверти, если к<0, то во 2 и 4 четверти.

Это уравнение окружности с центром в точке (;) и радиусом .











Линейная, обратная пропорциональность, прямая пропорциональность, квадратичная, линейная























На рисунке А изображена прямая проходящая через начало координат, она является графиком прямой пропорциональности отмеченной под цифрой 1. На рисунке Б изображена гипербола- график обратной пропорциональности, он отмечен под цифрой 2. Под буквой В изображена парабола- график квадратичной функции ей соответствует номер 3.







Система

Дети высказывают свое мнение

Система- форма организации чего- нибудь, нечто целое, представляющее единство взаимосвязанных частей



Да



Найти все решения или установить, что их нет

Подстановки, сложения





Дети формулируют цель урока: Сегодня мы должны рассмотреть системы уравнений и научится их решать графическим способом.

3. Объяснение нового материала


Рассмотреть

графический

способ решения

систем уравнений

с двумя переменными

Вывести алгоритм

графического способа

решения систем

уравнений с двумя

переменными

Давайте откроем тетради, запишем в них число, тему урока.

- Для того чтобы определить как же решается система уравнений графическим способом разберем пример ( Слайд 4)



-Можем ли мы сразу найти решение этой системы уравнений графическим способом?

- А как же нам поступить?









-Чем представлено первое уравнение?





- Чем является график второго уравнения?



-Куда направлены ветви параболы?



Почему?

- Что происходит с графиками этих уравнений?

-Сколько точек пересечения мы видим?

-Назовите координаты каждой точки.





-Сформулируем алгоритм решения систем уравнений графическим способом.









































Молодцы, хорошо.

-Давайте проверим по слайду, верно ли мы составили алгоритм графического способа решения систем уравнений.

( Слайд 5)

-Прочитайте его

- Самый лучший результат для запоминания возникает, когда работает комбинированная память. Мы можем видеть о чем говорим, про себя проговаривать и записывать .



Запишите алгоритм себе в тетрадь и про себя проговорите его.

- При решении системы уравнений мы видели, что графики пересекались в четырех точках

- Как вы думаете, могут ли эти графики иметь другое расположение?



- Когда это возможно?

- Сколько же может быть точек пересечения, если мы будем двигать окружность?

- Сколько решений при этом может иметь система уравнений?



- От чего зависят решения?






Дети записывают в тетрадях число, классная работа, тема урока.



































Нет



В одну систему координат поместить оба графика

Окружностью с центром в начале координат и радиусом равным 5

Параболой с вершиной в точке(1;6)

Вниз

Так как перед стоит знак минус

Пересекаются



4



А(-2; -4,5), В(0; 5), С(2,5; 4,2); D(4;-3).



Дети пытаются вывести алгоритм графического способа решения систем уравнений.

  1. Мы должны видеть, что в каждом уравнении выражена переменная у.

  2. Построить графики уравнений в одной системе координат

  3. Найти точки пересечения графиков

  4. Записать координаты полученных точек































1 человек читает алгоритм











Со слайда переписывают алгоритм







Да



Если сдвинуть окружность



3,2,1, не иметь общих точек

1, 3 ,2,несколько, не иметь решений

От количества общих точек

4.Музыкальная пауза


Мы с вами хорошо поработали, а теперь немного отдохнем, послушаем хорошую музыку и представим, что мы на берегу океана, вокруг нас шумят волны, ярко светит солнце.


5.Формирование умений и навыков

Закрепить полученные знания с помощью тренировочных заданий и упражнений.

Проконтролировать степень усвоения нового учебного материала




-Отдохнули, а теперь поучимся составлять уравнения и определять количество решений в системах.

выполним №441

Прочитайте задание.

-Что нужно сделать в этом задании?











- Назовите первую систему?







- Сколько решений имеет эта система? Почему?





- Назовите вторую систему?





- Сколько решений имеет вторая система? Почему?





- Назовите третью систему?

- Сколько уравнений должно быть в системе уравнений?

-А у нас сколько?



-Что же вы можете об этом сказать?





- Как же будет выглядеть система?





- Сколько решений она будет иметь? Почему?





- Теперь постараемся составить систему уравнений по имеющимся графикам.

Выполним№443 а ( на доске закреплен плакат с графиками данных систем уравнений).

- На каком рисунке система уравнений имеет два решения?

-Запишите получившуюся систему





- Что мы уже научились делать?







- А теперь вспомним, как записываются решения систем уравнений

( Слайд 6)



- Что значить решить эту систему?





-Как найти координаты точек пересечения?





- У первой точки, какие координаты?

- Назовите координаты второй точки

- Какой ответ у вас получился?



- Мы составляли системы уравнений, определяли количество корней в системе, а теперь перейдем к решению системы уравнений графическим способом

- Запишите №444 (а)

х-у=0

х∙у=4



- Чем будем пользоваться при решении системы?



- Что нужно сделать сначала?











Что получилось?





- Что вы можете сказать о первом уравнении системы?













- Сколько точек нужно для ее построения?









- Что вы можете сказать о втором уравнении системы?



- Что является графиком этой функции?

- Какие значения х можно брать для составления таблицы значений функции?





-- Что нам нужно дальше выполнить?





-А потом?





- Сколько решений имеет данная система?

- Назовите решения системы уравнений?
















Записать систему уравнений и определить количество решений для каждой из систем уравнений

у- х=3

у+2х= -3



1 решение, так как графики пересекаются в 1 точке

2у-х=6

2у-х=-4



Не имеет решений, так как графики не пересекаются



Могут возникнуть затруднения

2

1



Уравнения совпадают

у+2х=4

у+2х=4



Бесконечно, так как системы уравнений совпадают











2

+=4

у+2х=2





Составлять системы уравнений и определять количество решений этих систем





































Нужно найти координаты точек пересечения двух уравнений

Опустить перпендикуляры на оси х и у из каждой точки

(-2;5)

(2;- 3)

(-2;5); (2;- 3)













( 1 человек решает у доски, остальные в тетради)



алгоритмом





Из каждого уравнения системы нужно выразить переменную у через х

у=х

у=



Это уравнение прямой пропорциональности, графиком является прямая, проходящая через начало координат



достаточно взять 1 точку

Составим таблицу

х

1

у

1

Это уравнение обратной пропорциональности



Гипербола

Любые , кроме 0

Составим таблицу

х

-4

-2

-4

1

2

4

у

-1

-2

-4

4

2

1



Построить уравнения в одной системе координат

Найти координаты точек пересечения этих уравнений



2

(-2;-2); (2;2)



6. Итог

Систематизировать

информацию,

полученную на уроке

Мы очень хорошо поработали, подведем итог нашей работы.



- Чем мы сегодня занимались?





- Так что же такое система уравнений?











- Что называют решением системы уравнений с двумя переменными?











-В каком случае система имеет единственное решение?





-В каком случае система имеет бесконечное множество решений?



-Когда система не имеет решений?





-Сформулируйте алгоритм графического решения систем уравнений









Графически решали системы уравнений



Системой уравнений называют некоторое количество уравнений, объединенных фигурной скобкой.


Пару значений переменных х и у , обращающих каждое уравнение в верное равенство.



Когда два уравнения имеют 1 точку пересечения графиков

Когда два уравнения совпадают



Когда два уравнения не имеют общих точек



Дети формулируют алгоритм графического решения систем уравнений по памяти.

  1. Домашнее задание



П.3.5 №442(а; в), №444 б

Наш урок мне бы хотелось закончить строчками.

Приобретать знания - храбрость

Приумножать их - мудрость

А умело применять- великое искусство!

И вы действительно храбро искали пути решения системы с двумя переменными графическим способом. Мудро составляли алгоритм графического способа решения с двумя переменными, и умело применяли свои знания.

Учитель благодарит учеников за урок

Дети записывают домашнее задание в дневники






Учитель__________________________________________ Толмачева Галина Николаевна